Морфология и основы систематики вирусов. Морфология вирусов, особенности классификации

Вирусы. Морфология и физиология вирусов

Г. Минск

ЛЕКЦИЯ №8

ТЕМА: ʼʼРНК - и ДНК-содержащие вирусы. ВИЧ, СПИДʼʼ

Специальность – Сестринское дело

Подготовила преподаватель – Протько Л.И.

План изложения:

3. ВИЧ – СПИД. Эпидемиология и патогенез. Профилактика

4. Вирус гриппа. Эпидемиология и патогенез. Иммунитет, профилактика

5. Вирусы гепатитов. Эпидемиология и патогенез. Иммунитет, профилактика

Вирусные заболевания возникли в глубокой древности, однако вирусология как наука начала развиваться в конце XIX века.

В 1892ᴦ. русский ученый-ботаник Д.И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название фильтрующихся вирусов. В дальнейшем было показано, что имеются и другие микроорганизмы, проходящие через бактериальные фильтры, в связи с этим фильтрующиеся вирусы стали называть просто вирусами.

Большой вклад в изучение вирусов внесли вирусологи: М.А. Морозов, Н.Ф. Гамалея, Л.А. Зильбер, М.П. Чумаков, А.А. Смородинцев, В.М. Жданов и др.

Вирусы - ϶ᴛᴏ неклеточная форма существования живой материи. Οʜᴎ очень малы. По образному выражению В.М. Жданова ʼʼвеличину их по отношению к величинœе средних бактерий можно сравнить с величиной мыши по отношению к слонуʼʼ. Увидеть вирусы стало возможно только после изобретения электронного микроскопа.

Сегодня для изучения вирусов используют много методов: химические, физические, молекулярно-биологические, иммунобиологические и генетические.

Все вирусы подразделяются на поражающие человека, животных, насекомых, бактерии и растения.

У вирусов наблюдается большое разнообразие форм и биологических свойств, однако всœе они имеют общие черты строения. Зрелые частицы вирусов называют вирионами.

В отличие от других микроорганизмов, содержащих одновременно ДНК и РНК, вирион содержит только одну из нуклеиновых кислот – либо ДНК, либо РНК.

Нуклеиновая кислота вирусов должна быть однонитчатой и двунитчатой. Почти всœе вирусы, содержащие РНК, имеют в своем геноме однонитчатую РНК, а содержащие ДНК – двунитчатую ДНК. В соответствии с двумя типами генетического вещества вирусы подразделяют на РНК- и ДНК-содержащие. К ДНК-содержащим относятся 6 семейств, РНК-содержащим – 11 семейств.

Токсонамический признак Семейство Представители
ДНК-содержащие
2-ух нитчатая ДНК, отсутствие внешней оболочки Аденовирусы Аденовирусы
Паповирусы Вирус помиломы, полиномы и бородавок человека
1-нитчатая ДНК, отсутствие внешней оболочки Парвовирусы Аденоассоциированные вирусы
2-ух нитчатая ДНК, наличие внешней оболочки Герпесвирусы Вирус простого герпеса, циталомеголии, ветряной оспы
Гепадновирусы Вирус гепатита В
Поксвирусы Вирус натуральной оспы, осповакцины
РНК-содержащие
+однонитевая РНК, отсутствие внешней оболочки Пикорновирусы Вирус полиомиелита͵ коксаки, ЕСНО, вирус гепатита А
Колицивирусы Вирус гастроэнтерита детей
2-ух нитевая РНК, отсутствие внешней оболочки Реовирусы Реовирусы, ротовирусы, орбивирусы
наличие обратной транскриптазы Ретровирусы ВИЧ, вирусы Т-лейкоза, онковирусы
+однонитевая РНК, наличие внешней оболочки Тогавирусы Вирус омской гемморагической лихорадки, краснухи
+однонитевая РНК Флавивирусы Вирус клещевого энцефалита͵ лихорадки Денге, желтой лихорадки
-однонитевая РНК Буньявирусы Вирус Буньямвера, крымской гемморагической лихорадки
Аренавирусы Вирусы лимфоцитарного хормоменингита͵ болезни Лассо
Рабдовирусы Вирус бешенства, везикулярного стоматита
2-ух нитевая РНК, наличие внешней оболочки Парамиксовирусы Вирус парагриппа, паратита͵ кори, РСВ
Ортомиксовирусы Вирус гриппа

Структура вириона. В центре вириона находится нуклеиновая кислота͵ которая окружена капсидом. Капсид состоит из белковых субъединиц, называемых капсомерами. Зрелый вирус по химической структуре является нуклеокапсидом. Количество капсомер и способ их укладки строго постоянны для каждого вида вируса. Капсомеры бывают уложены в виде многогранника с равномерными симметрическими гранями – кубоидальная форма (аденовирус). Укладка в виде спиралей характерно для вирусов гриппа. Может быть тип симметрии, при котором нуклеиновая кислота имеет вид пружины, вокруг которой уложены капсомеры, в данном случае вирус имеет палочковидную форму – вирус, вызывающий болезнь листьев табака.

Сложный тип симметрии имеет фаг: головка – кубоидальной, а отросток – палочковидной формы.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, исходя из способа укадки вирусы подразделяют на кубоидальную, сферическую, палочковидную и сперматозоидную формы.

Некоторые вирусы, обладающие более сложной структурой, имеют оболчку, которая принято называть пеплос. Она образуется при выходе вируса из клетки хозяина. Вирусный капсид при этом обволакивается внутренней поверхностью цитоплазматической мембраны клетки хозяина и образуется один или несколько слоев оболочки суперкапсид. Такую оболочку имеют только некоторые вирусы, к примеру, вирусы бешенства, герпеса. Эта оболочка содержит фосфолипиды, разрушающиеся под воздействием эфира. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, воздействуя эфиром, можно отличить вирус, имеющий пеплос, от вируса с ʼʼголым капсидомʼʼ.

У некоторых вирусов из внешнего липидного слоя оболочки выступают капсомеры в виде шипов (эти шипы тупые). Такие вирусы называются пепломерами (вирус гриппа).

Нуклеиновая кислота вируса является носителœем наследственных свойств, а капсид и внешняя оболочка несут защитные функции, как бы способствуют проникновению вируса в клетку.

Размер вирусов. Измеряются вирусы в наномерах. Величинв их колеблется в широком диапазоне от 15-20 до 350-400 нм.

Методы измерения вирусов.

1. Фильтрование через бактериальные фильтры с известной величиной спор

2. Ультрацентрифугирование – крупные вирусы осаждаются быстрее

3. Фотографирование вирусов в электронном микроскопе

Химический состав вирусов. Количество и содержание ДНК и РНК вирусов неодинаковы. У ДНК молекулярная масса колеблется от 1‣‣‣10 6 до 1,6‣‣‣10 8 , а у РНК – от 2‣‣‣10 6 до 9,0‣‣‣10 6 .

Белки у вирионов обнаружены в незначительном числе. Οʜᴎ состоят из 16-20 аминокислот. Кроме капсидных белков, имеются еще внутренние белки, связанные с нуклеиновой кислотой. Белки обуславливают антигенные свойства вирусов, а также в силу плотной укладки полипептидных цепей ограждают вирус от действия ферментов клетки хозяина.

Липиды и углеводы обнаружены во внешней оболочке сложных вирионов. Источником липидов и углеводов является оболочка клетки хозяина. Полисахариды, входящие в состав некоторых вирусов, обусловливают способность их вызывать агглютинацию эритроцитов.

Ферменты вирусов. Вирусы не имеют собственного метаболизма, в связи с этим они не нуждаются в ферментах обмена веществ. При этом у некоторых вирусов выявлено наличие ферментов, способствующих проникновению их в клетку хозяина.

Выявление вирусных антигенов. Вирусные антигены в инфицированных клетках хозяина можно обнаружить с помощью метода иммунофлюоресценции. Препараты, содержащие клетки, инфицированные вирусами, обрабатывают специфическими иммунными люминœесцирующими сыворотками. При просмотре частиц наблюдается характерное свечение. Вид вируса определяют по соответствию специфической люминœесцирующей сыворотки, вызвавшей свечение.

Внедрение вируса в клетку, взаимодействие его с клеткой хозяина и репродукция (размножение) слагаются из ряда последовательных стадий.

Стадия 1. Начинается с процесса адсорбции за счёт рецепторов вириона и клетки. У сложных вирионов рецепторы располагаются на поверхности оболочки в виде шиповидных выростов, у простых вирионов – на поверхности капсида.

Стадия 2. Проникновение вируса в клетку хозяина протекает по-разному у разных вирусов. К примеру, некоторые фаги протыкают оболочку своим отростком и впрыскивают нуклеиновую кислоту в клетку хозяина. Другие вирусы попадают в клетку путем втягивания вирусной частицы с помощью вакуоли, ᴛ.ᴇ. на месте внедрения в оболочке клетки образуется углубление, затем края ее смыкаются и вирус оказывается в клетке. Такое втягивание принято называть виропексис.

Стадия 3. ʼʼраздевание вирусаʼʼ (дезинтеграция). Важно заметить, что для своего воспроизведения вирусная нуклеиновая кислота освобождается от защищающих ее белковых покровов. Процесс раздевания может начаться во время адсорбции, а может произойти тогда, когда вирус находится уже внутри клетки.

Стадия 4. На этой стадии происходит репликация (воспроизведение) нуклеиновых кислот и синтез вирусных белков. Эта стадия происходит при участии ДНК или РНК клетки хозяина.

Стадия 5. Сборка вириона. Этот процесс обеспечивается самосборкой белковых частиц вокруг вирусной нуклеиновой кислоты. Синтез белка может начаться непосредственно после синтеза вирусной нуклеиновой кислоты либо после интервала в несколько минут или несколько часов. У одних вирусов самосборка происходит в цитоплазме. У других в ядре клетки хозяина. Образование внешней оболочки всœегда происходит в цитоплазме.

Стадия 6. Выход вириона из клетки хозяина происходит путем просачивания вируса через оболочку клетки либо через отверстие, образовавшееся в клетке хозяина.

Типы взаимодействия вируса и клетки. Первый тип – продуктивная инфекция – характеризуется образованием новых вирионов в клетке хозяинаю

Второй тип – абортивная инфекция состоит по сути в том, что обрывается репликация нуклеиновой кислоты.

Третий тип – характеризуется встраиванием вирусной нуклеиновой кислоты в ДНК клетки хозяина; возникает форма сосуществования вируса и клетки хозяина (вирогения). В этом случае обеспечивается синхронность репликации вирусной и клеточной ДНК. У фагов это принято называть лизогения.

Микроскопическое исследование. При отдельных вирусных инфекциях в цитоплазме или ядрах клеток организма хозяина наблюдаются специфические внутриклеточные тельца – включения, имеющие диагностическое значение. Размеры вирусных частиц и телœец-включений удается искусственно увеличить специальными методами обработки препаратов с протравой и импрегнацией и наблюдать при иммерсионной микроскопии. Более мелкие вирионы, лежащие за пределами видимости оптического микроскопа, обнаруживаются только при электронной микроскопии. Существуют разные точки зрения в отношении внутриклеточных включений. Οʜᴎ авторы считают, что они представляют из себяскопление вирусов. Другие считают, что они возникают в результате реакции клетки на внедрение вирусов.

Генетика вирусов. Модификация у вирусов обусловливается особенностями клетки хозяина, в которой происходит репродукция вируса. Модифицированные вирусы приобретают способность заражать клетки, аналогичные тем, в которых они модифицировались. У разных вирусов модификация по-разному проявляется.

Мутация – у вирусов возникает под влиянием тех же мутагенов, которые вызывают мутация у бактерий. Возникает мутация во время репликации нуклеиновых кислот. Мутации затрагивают различные свойства вирусов, к примеру чувствительность к температуре и др.

Генетическая рекомбинация у вирусов может возникнуть в результате одновременного заражения клетки хозяина двумя вирусами, при этом может произойти обмен отдельными генами между двумя вирусами и образуются рекомбинанты, содержащие гены двух родителœей.

Генетическая реактивация генов иногда происходит при скрещивании инактивированного вируса с полноценным, что приводит к спасению инактивированного вируса.

Спонтанная и направленная генетика вирусов имеет большое значение в развитии инфекционного процесса.

Устойчивость к факторам окружающей среды. Большинство вирусов инактивируется при действии высоких температур.
Размещено на реф.рф
При этом имеются исключения, к примеру вирус гепатита термоустойчив.

К низким температурам вирусы не чувствительны. Ультрафиолетовые солнечные лучи оказывают инактивирующее действие на вирусы. Рассеянный солнечный свет действует на них менее активно. Вирусы устойчивы к глицерину, что дает возможность длительно сохранять их в глицеринœе. Οʜᴎ устойчивы к антибиотикам.

Кислоты, щелочи, дезинфицирующие вещества инактивируют вирусы. При этом некоторые вирусы, инактивированные формалином, сохраняют иммуногенные свойства, что позволяет использовать формалин для получения вакцин.

Восприимчивость животных. Круг восприимчивых животных для некоторых вирусов очень широк, к примеру, к вирусам бешенства чувствительны сногие животные. Некоторые вирусы поражают только один вид животного, к примеру, вирус чумы собак поражает только собак. Имеются вирусы, к которвм животные не чувствительны – вирус кори.

Органотропность вирусов. Вирусы обладают способностью поражать определœенные органы, ткани и системы. К примеру, вирус бешенства поражает нервную систему.

Выделœение вирусов в окружающую среду. Из больного организма вирусы могут выделиться с калом, к примеру вирус полиомиелита͵ вирус бешенства выделяется со слюной.

Основные пути передачи вирусов. Воздушно-капельный, пищевой, контактно-бытовой, трансмиссивный.

Противовирусный иммунитет. Организм человека обладает врожденной устойчивостью к некоторым вирусам. К примеру, человек не чувствителœен к вирусу чумы собак.

Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими.

Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество – интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается. Он неспецифичен, так как блокирует репродукцию разных вирусов. При этом он обладает тканевой специфичностью, ᴛ.ᴇ. клетки разных тканей образуют неодинаковый интерферон. Считают, что механизм действия его состоит по сути в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукция вируса.

К специфическим факторам противирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

Основные методы исследования вирусов.

1. Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывание комплемента

2. Реакция нейтрализации вирусов в культуре тканей

3. Метод иммунофлюоресценции

4. Гистологический метод – выявление включений

5. Биологический метод

Вирусы. Морфология и физиология вирусов - понятие и виды. Классификация и особенности категории "Вирусы. Морфология и физиология вирусов" 2017, 2018.

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

3. Культивирование вирусов

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7-10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;

3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);

4) размножение в культуре ткани (это основной метод культивирования вирусов).

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

4. Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;

2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.

Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.

Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.

Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.

Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.

Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.

Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.

Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги) (рис. 8).

Рис. 8. Формы вирионов:

1 вирус оспы; 2 вирус герпеса; 3 аденовирус; 4 паповавирус; 5 гепаднавирус; 6 парамиксовирус; 7 вирус гриппа; 8 коронавирус; 9 аренавирус; 10 ретровирус;

Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одними из самых мелких вирусов являются вирусы полиомиелита и ящура (около 20 нм), цирковирусы (16 нм), наиболее крупным вирус натуральной оспы (около 350 нм). Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, то есть имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными.

Различают просто устроенные (например, вирус полиомиелита) и сложно устроенные (например, вирусы гриппа, кори) вирусы. У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa футляр). Капсид состоит из повторяющихся морфологических субъединиц капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид. У сложно устроенных вирусов капсид окружен дополнительной липопротеидной оболочкой суперкапсидом (производное мембранных структур клетки-хозяина), имеющим «шипы». Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называют сердцевиной.

Для вирионов характерен спиральный, кубический и сложный типы симметрии капсида. Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида, кубический образованием изометрического полого тела из капсида, содержащего вирусную нуклеиновую кислоту.

Кроме обычных вирусов, известны и так называемые неканониче ские вирусы прионы белковые инфекционные частицы, имеющие вид фибрилл размером 10-20 х 100 200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтцфельдта Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.